
Random Number Generators:

Introduction for Operating System Developers

Key material generation is as important to strong
cryptosystems as the algorithms used. Weak random
number generators (RNGs) have been known to create
key material that is guessable by adversaries1, making
the strength of the algorithms irrelevant in cryptographic
attacks. This paper, intended for operating system
developers, provides an overview of considerations
developers should be making when designing and
using RNGs, outlines how RNGs work, and gives
recommendations for developing and using RNGs.

Why Good RNGs Are Important
Consider an example system using 256-bit AES to
protect sensitive communications. Imagine these keys
are generated by selecting from a hard-coded list of four
possible values. If an attacker knows this list, then he

instead of the 2^256 guesses that should be required to
break the AES algorithm. This situation is equivalent to
using a weak RNG because an attacker can exhaust the
key space.

When designing a security product, there are many
situations in which “random” numbers are needed. We can
divide these situations into two classes – key material and
one-time numbers:

Key Material. Key material includes authentication keys
(RSA, DSA, ECDSA), key agreement parameters (DH
and ECDH), and encryption keys (3DES, AES, RSA). As
the example above indicates, the reason key material
needs a good RNG is to prevent guessing. So while an
incrementing counter may avoid repeats, an adversary can
guess the next output and, thus, guess the key material.

One-Time Numbers. One-time numbers include unique

vectors. With this class, the goal of using an RNG is not to
prevent guessing, but to avoid repeats. In these situations,
a predictable output, while not recommended, may be
acceptable.

What Makes Good RNG Output
Good RNGs produce bytes that are unpredictable. The
measurement of this unpredictability is called “entropy.”
Good RNGs are guaranteed to produce outputs with as
much entropy as requested - that is, in a sequence of

services should request as much entropy as the security
strength2 of the algorithm.

How a Good RNG Works
A good RNG usually has three pieces – (1) noise
source(s), (2) optional conditioning block, and (3)
deterministic random bit generator (DRBG). The RNG
should be designed and provided by the hardware or
operating system rather than being implemented by
application developers.

Noise
Source

Noise
Source

Conditioning DRBG

Noise Sources. The noise source is what ultimately
ensures that your RNG output is not guessable. The
entropy in an RNG should be measured by testing the
noise sources. NIST has published entropy tests3 to
estimate the entropy in noise sources. Additionally, some
real-time testing should be performed on the source to
guarantee that it is operating correctly.

Many noise sources produce less than one bit of entropy
per output; that’s ok – the RNG must compensate by
gathering a lot of output from this source, possibly
requiring a long time. For this reason, and because
noise sources may fail, having multiple noise sources is
recommended.

March 2014

1 Durumeric, Z., Halderman, J., Heninger, N., Wustrow, E. “Mining Your Ps and

Qs: Detection of Widespread Weak Keys in Network Devices.” In Proc. 21st

USENIX Security Symposium, Aug 2012. Rev. 2.

2

describes security strength and gives the strengths for various algorithms.

3

Conditioning. The output from the noise source then goes
through “mixing and whitening.” “Mixing” is simply the
addition of data from the noise source into the pool to be
used by the DRBG. “Whitening” is a process by which the

accomplished with a hash function. Mixing and whitening
can also be accomplished by the DRBG step, so a
separate conditioning step is not always necessary.

Entropy tests are useless after this step because the
whitening is a one-way function. At this point, the data

output of an RNG; however, the next call to the RNG
would require gathering more output from the noise

a DRBG is therefore recommended to improve the speed
of the RNG.

DRBG. Deterministic Random Bit Generators (also known
as Pseudo Random Number Generators – PRNGs) take
input (a seed) from either the noise source(s) or the
conditioning step and produce outputs of random values.

Good DRBGs are designed not to leak information about
the secret “state” of the RNG for a large but limited
number of iterations. The state is the information required
to mathematically compute the next output of the RNG.
Bad DRBGs, such as Linear Congruential Generators
used in most C rand() and random() implementations, leak
state and are not suitable to cryptographic applications.4

good DRBGs, their security strengths, and the necessary
5

When the DRBG has output the maximum number
of bytes it can securely output, the DRBG must be
“reseeded.” Here, reseed really means “augment” - mixing
more entropy from noise sources into the DRBG state.

The best implementations reseed often (for example, at
every call to the RNG) – long before hitting the output limit.

DRBGs can be chained together to produce key material,

cryptographically strong as that of the weakest link.

Because generating good random can be an expensive
operation both in time and calculation, developers can
make trade-offs by using a DRBG, thereby reserving the
good RNG for the key material.

Recommendations

and/or FIPS 140-2 validated.

requesting bytes from the RNG with a requested security
strength.

bytes to the entropy pool. These bytes do not count as
entropy.

prevent RNG repeats across product lines, but these
values do not count as entropy.

shutdown and startup can prevent RNG repeats
on a single device, but this state does not count as
unpredictable entropy.

noise sources available; in particular mobile devices
have baseband, accelerometer, camera, and
microphone activity which may be used as sources.

sources available and, as such, should use a hardware
noise source(s).

4 Reeds, J. “Cracking a Random Number Generator” In Cryptologia, Jan.

Generator.” In ACM Transactions on Modeling and Computer Simulation, Jan.

5

March 2014

